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Summary

This technical note describes Stage | of the residual modelling undertaken as part of the
additional modelling studies carried out for Phase Il of the Mersey Gateway Project. Under
Stage | several pier shapes (square and rectangular) were modelled without any sediment
included to look at the effect of pier shape on residual flows. From these runs the impact of an
elongated pier shape on the flow residuals was determined.

This report is one of a series of five Technical Notes (R1241a to R.1241e):

" Technical Note A: Residual Modelling - Stage |

. Technical Note B: Residual Modelling - Stage II;

. Technical Note C: Flat Bed Morphological Modelling;
" Technical Note D: Real Hydrograph Modelling; and
. Technical Note E: Phase Differences.

An idealized model has been used to make an assessment of two pier layouts (one
representative of the proposed bridge towers and the other representative of an elongated
structure) on the residual flow for typical flow conditions and an extreme fluvial condition. From
these tests the key conclusions drawn are:

" Under normal flow conditions for the channel configuration used the residuals close to
the structures are small in magnitude. The largest directional change in the velocity is
as the flow approaches the tower with flows bifurcating around the structure, before
gradually returning to the original baseline directions and magnitude.

" The model results show both acceleration of the flow around the structure and
deceleration behind it due to the blockage effect. Under normal conditions (spring-
neap-spring tidal cycle) the velocity residuals are low in magnitude and typically less
then 0.08m/s. Away from the structure within the north channel the residuals increase
to about 0.25m/s.

" The elongated structure shows the widest extent of change, although the extent of the
change is limited to about 100m radius centred on the structure. This also
demonstrates why the proposed bridge towers have little impact, as the size of the
structures relative to the flow and their impact relative to each other is outside their
respective spheres of influence.

. Under a different channel configuration it would be expected that the elongated
structure could lead to significantly different residual patterns depending on the angle
of approach of the flow to the obstacle. However, this is not a problem for the proposed
bridge tower as it offers the same profile to the flow regardless of the angle of
approach.
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" Based on the modelling undertaken to date it has been demonstrated that the impact
of the proposed bridge towers will have little impact on the tidal flow and the
corresponding residuals. In turn this suggests that any impact on the morphological
response of the system will be secondary to any changes happening naturally. An
assessment of the response of the upper estuary under a different channel
configuration has already been undertaken for the Route 3A preferred option and has
demonstrated that whilst the overall pattern of change is different the extent and
magnitude of the change is of a similar order to that predicted using the 2002
bathymetry. Therefore, it is suggested that for different channel configurations, whilst
the spatial pattern of change may vary, particularly local to the structures, the overall
magnitude and extent of change remains similar.

RI3411/4 (i) R.1241a
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Introduction

Tidal residuals represent the net pattern of the flow field integrated over a tidal period.
For example, in the present study several periods have been used to integrate the flow
field over, a spring—neap-spring tidal cycle covering a 15 days period, a spring tide and
a neap tide period. Sediment transport paths can be inferred indirectly from
measurements/predictions of flow intensity profiles during entire tidal cycles. Therefore,
changes in tidal residuals can be used to indicate likely changes in sediment transport
paths.

Two scenarios have been run initially. The first scenario represents a typical spring-
neap-spring cycle with representative mean daily flows, whilst the second represents
the same spring-neap-spring tidal cycle with mean daily flows that represent an
extreme fluvial event over the weir at Westy.

Figure 1 shows the spring-neap-spring tidal cycle used on the downstream boundary.

Results
The extent of the model grid used is shown in Figure 2.

The model scenarios undertaken have been carried out for a structure representative
of the proposed bridge towers (1 model cell - termed short) and also for an elongated
structure represented by 5 model cells (termed long). Residuals have been calculated
for three different periods as described above and shown in Figure 1.

Scenario 1 is representative of a typical spring-neap-spring cycle with typical fluvial
flows representative of January. Scenario 2 uses the same spring-neap-spring tidal
cycle but with extreme fluvial flows measured at Westy weir. Overall, the results of the
two scenario runs show similar patterns in the flow residuals although with greater
magnitude for the extreme event. The black vectors represent the baseline case, whilst
the red vectors represent the particular scenario.

Figures 3a to 3f show the results for scenario 1. Other than the variation in magnitude
of the residuals for the different periods of integration, there is no marked difference in
pattern. The residuals determined by integrating the velocity over several spring tides
have the greatest magnitude, whilst the residuals corresponding to a neap tide show
the lowest values (as expected). The elongated structure (shown as blank cells) shows
the widest extent of change, although the extent of the change is limited to about 100m
radius centred on the structure. This also demonstrates why the proposed towers have
little impact, as the size of the structures relative to the flow and their impact relative to
each other is outside their respective spheres of influence.

1 R.1241a
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Figures 4a to 4f show the results for scenario 2. The modelling results for the extreme
fluvial event show a similar pattern of change compared to those of the normal spring-
neap-spring cycle although the magnitude of the change is greater.

Based on the residual pattern the greatest changes in the channel will occur on the
intertidal bank side of the structures as the strongest residuals are predicted at this
position. For the elongated tower structure the vectors show the obstacle to cause
alignment of the vectors along its bank side flank. The greatest directional change in
the velocity is as the flow approaches the tower with flows bifurcating around the
structure, before gradually returning to the original baseline directions and magnitude.

The model results show both acceleration of the flow around the structure and
deceleration behind it due to the blockage effect. Under normal conditions (spring-
neap-spring tidal cycle) the velocity residuals are low in magnitude and typically less
than 0.08m/s. Away from the structure within the north channel the residuals increase
to about 0.25m/s.

Under a different channel configuration it would be expected that the elongated
structure could lead to significantly different residual patterns depending on the angle
of approach of the flow to the obstacle. However, this is not a problem for the proposed
bridge tower as it offers the same profile to the flow regardless of the angle of
approach.

Conclusion

An idealized model has been used to make an assessment of two pier layouts (one
representative of the proposed bridge towers and the other representative of an
elongated structure) on the residual flow for typical flow conditions and an extreme
fluvial condition.

" Under normal flow conditions for the channel configuration used the residuals
close to the structures are small in magnitude. The largest directional change
in the velocity is as the flow approaches the tower with flows bifurcating
around the structure, before gradually returning to the original baseline
directions and magnitude.

" The model results show both acceleration of the flow around the structure and
deceleration behind it due to the blockage effect. Under normal conditions
(spring-neap-spring tidal cycle) the velocity residuals are low in magnitude and
typically less then 0.08m/s. Away from the structure within the north channel
the residuals increase to about 0.25m/s.

2 R.1241a
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The elongated structure shows the widest extent of change, although the
extent of the change is limited to about 100m radius centred on the structure.
This also demonstrates why the proposed bridge towers have little impact, as
the size of the structures relative to the flow and their impact relative to each
other is outside their respective spheres of influence.

Under a different channel configuration it would be expected that the
elongated structure could lead to significantly different residual patterns
depending on the angle of approach of the flow to the obstacle. However, this
is not a problem for the proposed bridge tower as it offers the same profile to
the flow regardless of the angle of approach.

Based on the modelling undertaken to date it has been demonstrated that the
impact of the proposed bridge towers will have little impact on the tidal flow
and the corresponding residuals. In turn this suggests that any impact on the
morphological response of the system will be secondary to any changes
happening naturally. An assessment of the response of the upper estuary
under a different channel configuration has already been undertaken for the
Route 3A preferred option and has demonstrated that whilst the overall pattern
of change is different the extent and magnitude of the change is of a similar
order to that predicted using the 2002 bathymetry. Therefore, it is suggested
that for different channel configurations, whilst the spatial pattern of change
may vary, particularly local to the structures, the overall magnitude and extent
of change remains similar.

3 R.1241a
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Figure 1. Tidal curve at downstream boundary showing tidal residual averaging
periods
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Figure 3a. Tidal residuals around short structure in north channel over a spring-
neap-spring cycle under extreme fluvial flows
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Figure 3b. Tidal residuals around long structure in north channel over a spring-
neap-spring cycle under extreme fluvial flows
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Figure 3c. Tidal residuals around short structure in north channel integrated over
several spring tides under extreme fluvial flows
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Figure 3d. Tidal residuals around long structure in north channel integrated over
several spring tides under extreme fluvial flows
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Tidal residuals around short structure in north channel integrated over

Figure 3e.
several neap tides under extreme fluvial flows
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Figure 3f. Tidal residuals around long structure in north channel integrated over
several neap tides under extreme fluvial flows
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Figure 4a. Tidal residuals around short structure in north channel over a spring-
neap-spring cycle under extreme fluvial flows
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Figure 4b. Tidal residuals around long structure in north channel over a spring-
neap-spring cycle under extreme fluvial flows
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Figure 4c. Tidal residuals around short structure in north channel integrated over
several spring tides under extreme fluvial flows
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Figure 4e. Tidal residuals around short structure in north channel integrated over
several neap tides under extreme fluvial flows
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Figure 4f. Tidal residuals around long structure in north channel integrated over
several neap tides under extreme fluvial flows
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Summary

This technical note describes Stage Il of the residual modelling undertaken as part of the
additional modelling studies carried out for Phase Il of the Mersey Gateway Project. Under
Stage | several pier shapes (square and rectangular) were modelled without any sediment
included to look at the effect of pier shape on residual flows. From these runs the impact of an
elongated pier shape on the flow residuals was determined.

This report is one of a series of five Technical Notes (R1241a to R.1241e):

" Technical Note A: Residual Modelling - Stage |

. Technical Note B: Residual Modelling - Stage II;

. Technical Note C: Flat Bed Morphological Modelling;
" Technical Note D: Real Hydrograph Modelling; and
. Technical Note E: Phase Differences.

An idealized model has been used to make an assessment of scouring around the bridge
towers using a morphological model and to investigate the impact on the residual flow over
typical tidal conditions as well as the impact of a channel passing through the proposed
alignment of the bridge crossing. The key conclusions are:

" The largest directional change in the velocity is as the flow approaches the tower with
flows bifurcating around the structure, before gradually returning to the original
baseline directions and magnitude.

" The model results show both acceleration of the flow around the structure and
deceleration behind it due to the blockage effect. Under normal conditions (spring-
neap-spring tidal cycle) the velocity residuals are low in magnitude and typically less
then 0.10m/s. Away from the structure within the north channel the residuals increase
to about 0.25 - 0.30m/s.

" The modelling shows that the bedload transport is generally significantly less than the
suspended transport (up to 100 times smaller, approximately) demonstrating the high
energy in the system. In addition, over a normal tidal cycle the flooding tide is the most
significant in terms of sediment transport.

. The modelling is limited by the period of the simulation and the forcing applied.
Therefore, the results provide information on the short-term response of the system but
limit what can be inferred over the longer-term. In the short-term the system moves
towards a new stable equilibrium.

" The imposed scour holes are too deep to be sustained by the model, but this may be a
limitation in the numerical model and its ability to fully represent the 3-dimensional
nature of the scouring process. However, this could also be as a result of Equation 1
overestimating the equilibrium scour depth as this is for steady state conditions rather

RI3411/4 (i) R.1241b
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than for tidal flows. This could be investigated using a fully 3D Computational Fluid
Dynamics (CFD) model. This will have limited benefit at this stage as it is the long-term
response on the system that is of greatest import and a CFD model will only provide
short-term information on the system response.

The impact of having a channel passing through all three bridge tower positions is

limited by the strength of cross-estuary flows. This is not unexpected as the principal
axis of the tidal flow is directed along the length of the estuary.

(i) R.1241b
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Introduction

This technical note describes Stage Il of the residual modelling undertaken as part of
the additional modelling studies carried out for Phase Il of the Mersey Gateway
Project. Under Stage | several pier shapes (square and rectangular) were modelled
without any sediment included to look at the effect of pier shape on residual flows.
From these runs the impact of an elongated pier shape on the flow residuals was
determined.

For Stage Il two further scenarios have been investigated using only the square pier
shape. These two scenarios represent the morphological change and impact on tidal
residuals as a result of imposing scour holes around the three bridge towers and the
impact of having a channel running along the alignment of the three bridge towers,
respectively.

Tidal residuals represent the net pattern of the flow field integrated over a tidal period.
For example, in the present study several periods have been used to integrate the flow
field over, a spring—neap-spring tidal cycle covering a 15 days period, a spring tide and
a neap tide period (Figure 1). Sediment transport paths can be inferred indirectly from
measurements/predictions of flow intensity profiles during entire tidal cycles. Therefore,
changes in tidal residuals can be used to indicate likely changes in sediment transport
paths.

Figure 1 shows the spring-neap-spring tidal cycle used on the downstream boundary.
The extents of the model grid used are shown in Figure 2.

Scour Hole - Methodology

Impact of Scour Holes

The scour formula of Breusers et al. (1977) has been applied to estimate scour depth
under steady currents (Eqn.1). This formula allows for a correction for scour in shallow
water.

Sc = 1.5KiDtanh(%j (1)
in which:

D = Pile diameter (m)

ho = Flow depth (m)

Ki = Correction factor

Sc = Equilibrium scour depth under steady flow

1 R.1241b
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For the three tower positions the equilibrium scour depth has been calculated as given
in Table 1.

Table 1.  Predicted equilibrium scour depth under steady currents

Bridge Tower Equilibrium Scour Depth
Position Sc (m)
South 35
Middle 0.8
North 3.4

The plan-view extent of the scour hole formed around a bridge pier is a function of the
magnitude of the vortices formed, the depth of scour and the sediment characteristics.
Around a monopile structure the upstream scour slope is, typically, equal to the angle
of repose for the sediment (Table 2), whilst the average downstream slope is generally
less steep and is often taken to be half the upstream slope angle. However, under tidal
conditions where the flow direction is reversing with the flooding and ebbing tide then
the shape and dimensions of the scour hole are also likely to change within the tidal
cycle and may take on a more symmetrical conical shape.

Table 2. Angle of repose for different soils (from Hoffmans & Verheij, 1997)

Sediment Type Soil Type Angle ;f(f;epose

Compact 45
Coarse sand Firm 38
Loose 32
Compact 40
Medium sand Firm 34
Loose 30

Compact 30-34

Fine sand Firm 28-30

Loose 26-28

Under steady flow conditions the dimensions of the scour hole are approximated for
the 10m diameter bridge towers as shown in Figure 3 for the southern most tower. The
approach assumes a loosely compacted, fine sand with an assumed angle of repose,
¢, of 27°. The total width of scour is some 43.2m, approximately. Table 3 presents the
results for all three tower positions together with scour hole widths for assumed angles
of repose, corresponding to 26° and 34°.
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Table 3. Predicted scour width at the various tower positions for different
angles of repose for fine sand under steady flow conditions

Upstream | Downstream | Total
Angle of Repose Area Scour Width (m)

South tower 17.8 25.4 43.2

o =27° Middle tower 12.6 14.4 27.0
North tower 17.6 25.0 42.6

South tower 18.1 26.0 44.1

¢ =26° Middle tower 12.7 14.5 27.2
North tower 17.9 25.5 43.4

South tower 16.1 22.3 38.4

¢ =34° Middle tower 12.2 13.6 25.9
North tower 16.0 22.0 37.9

Using the predicted scour depths and assumed shape and extents of the scour holes
based on an assumed angle of repose, ¢, of 27° the bathymetry in the model has been
adjusted (Figure 4). Using this modified bathymetry the model has then been run over
a spring-neap period using a coupled hydrodynamic and morphological model with the
bridge structures represented as solid objects. This run has then been compared with
the results of a baseline simulation with no scour holes or structures run over an
identical time-period.

Results

Figure 5 shows the difference in sediment thickness between the scheme and the
baseline simulation. Figure 5a shows the results using a finer scaling to look at the
smaller changes in deposition and erosion of the sediment, whilst Figure 5b uses a
coarser scale to allow the larger scale changes to be seen more clearly. Both figures
are plotted together with the baseline tidal residuals. From the model results the scour
holes are infilled over the period of the simulation, which would imply both that the
holes were over-deepened and also that they are secondary to the wider-scale
changes. However, this may indicate more a limitation in the model not being capable
of reproducing the 3-dimensional nature of the scouring process and the turbulence
effects around the structure. The infilling is clearly visible in a 3-dimensional image of
the differences (Figure 6). Within the northern channel the modelling shows the
channel deepening to the south of the north bridge tower. At the middle tower, changes
in sedimentation are not significant, primarily because the tower position is currently on
top of a bank, which will only be flooded on spring tides.

Figure 7 shows the difference in sediment thickness between the scheme and the
baseline case after a second spring-neap period. The predicted changes are similar to
those over the first period and in fact the differences in sediment thickness between
the last time-step of the first spring-neap period and those of the second spring-neap
period are not significant (Figure 7c). This is partly as a response to driving the model
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with the same signal over the two spring-neap periods. The model appears to be
approaching a new equilibrium state. Figure 8 shows the tidal residuals averaged over
the spring-neap-spring cycle shown in Figure 1. In general, changes in the residual
pattern as a result of the placing of the bridge towers within the flow are confined to the
immediate area local to the structures. Figure 8b shows the tidal residuals around the
north tower showing some directional change between the baseline and scheme
vectors close to the structures. Around the south tower (Figure 8c) the changes in the
residual pattern are minimal.

Figures 9 and 10 show the depth-averaged suspended transport vectors and the
bedload transport vectors, respectively. The plots show results for both the baseline
and the scheme at different tidal states over a spring tide. From the figures it is clear
that the greatest movement of sediment happens on the flooding tide and that
suspended sediment transport is the dominant process. Note the difference in scale
between the suspended sediment plots and those for the bedload transport (a factor of
100 greater). As with the tidal residuals, there is some change in magnitude and
direction of the vectors local to the structures.

Imposed Channel - Methodology

Impact of Imposed Channel Along Bridge Alignment

A channel, which passed along the alignment of the proposed Route3A crossing, was
imposed upon the 2002 bathymetry. The resulting bathymetry is shown in Figure 11.
The purpose of this layout was to expose all three bridge towers to the flow through a
typical spring-neap cycle. Under the existing 2002 bathymetry the central bridge tower
is only exposed to flow on spring tides when the intertidal banks are flooded.

Results

Figure 12 shows a 3-dimensional image of the differences in sediment thickness
between the scheme and the baseline over the spring-neap-spring period (see
Figure 1). The largest changes occur around the northern most tower with deposition
upstream and downstream of the structure and erosion along the sides. A similar effect
occurs local to the southern most tower, whilst in the vicinity of the central tower the
model predicts mostly accretion of sediment. Despite the channel passing through the
alignment of the piers the dominant flow is still along the estuary rather than across the
estuary. This is not unexpected as the principal axis of the tidal flow is directed along
the length of the estuary. Figure 13 shows the difference in sediment thickness
between the baseline and the scheme at two scales, a finer scale (Figure 13a) and a
coarser scale (Figure 13b). This allows both the smaller-scale changes to be observed
whilst also allowing any significant larger scale changes to be seen.
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A comparison of the tidal residuals for the baseline and the scheme are shown in
Figure 14. The changes are confined to the regions local to the structures as seen in
the previous scenario (Figure 14a). Local to the structures the changes in the pattern
of the residuals (magnitude and direction) is small and appears to be less than
observed in the scour hole scenario (Figure 14b). This just demonstrates the effect that
the variability in channel positions relative to the structures has on the changes in
residual flow pattern.

Conclusions

An idealized model has been used to make an assessment of scouring around the
bridge towers using a morphological model and to investigate the impact on the
residual flow over typical tidal conditions as well as the impact of a channel passing
through the proposed alignment of the bridge crossing. The key conclusions are:

" The largest directional change in the velocity is as the flow approaches the
tower with flows bifurcating around the structure, before gradually returning to
the original baseline directions and magnitude.

" The model results show both acceleration of the flow around the structure and
deceleration behind it due to the blockage effect. Under normal conditions
(spring-neap-spring tidal cycle) the velocity residuals are low in magnitude and
typically less then 0.10m/s. Away from the structure within the north channel
the residuals increase to about 0.25 - 0.30m/s.

= The modelling shows that the bedload transport is generally significantly less
than the suspended transport (up to 100 times smaller, approximately)
demonstrating the high energy in the system. In addition, over a normal tidal
cycle the flooding tide is the most significant in terms of sediment transport.

. The modelling is limited by the period of the simulation and the forcing applied.
Therefore, the results provide information on the short-term response of the
system but limit what can be inferred over the longer-term. In the short-term
the system moves towards a new stable equilibrium.

" The imposed scour holes are too deep to be sustained by the model, but this
may be a limitation in the numerical model and its ability to fully represent the
3-dimensional nature of the scouring process. However, this could also be as
a result of Equation 1 overestimating the equilibrium scour depth as this is for
steady state conditions rather than for tidal flows. This could be investigated
using a fully 3D Computational Fluid Dynamics (CFD) model. This will have
limited benefit at this stage as it is the long-term response on the system that
is of greatest import and a CFD model will only provide short-term information
on the system response.
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" The impact of having a channel passing through all three bridge tower
positions is limited by the strength of cross-estuary flows. This is not
unexpected as the principal axis of the tidal flow is directed along the length of
the estuary.
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Example:

Bridge pler dismeter, 0= 10m

Angle of repose §= 27

Equilibrium scour depth, 5= 3.8m

Upstream width of zcour hole= 6.8+ 11.0=17 8m
Downstream width of scour hoke = 74.4+ 11.0=25.4m

Total width of scour hole = 43.2m

w5 x Angle of repose §

Figure 3. Scour hole width for southern tower, for angle of repose of 27°

Figure 4. Modified bathymetry showing scour holes around bridge towers
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Figure 6. A 3-dimensional image of the differences in sediment thickness between
the scheme and the baseline case over a spring-neap period. Note
negative values represent deposition and positive values erosion
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Figure 7c. Plot showing differences in sediment thickness between the last time-

step for the two spring-neap period runs for the scheme
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Figure 8b. Plot showing a close up of the tidal residuals around the north bridge
tower over a spring-neap period for the scheme (red) and the baseline
case (black)
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Figure 8c. Plot showing a close up of the tidal residuals around the south bridge
tower over a spring-neap period for the scheme (red) and the baseline
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Figure 9a. Plot showing depth-averaged suspended sediment transport vectors
around low water on a spring tide for the scheme (red) and the baseline
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Figure 11. Three-dimensional image of initial channel bathymetry
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Figure 12. Three-dimensional image showing differences in sediment thickness
between the scheme and the baseline case. Note negative values
represent deposition and positive values erosion
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Figure 13a.  Plot showing differences in sediment thickness between the scheme and
the baseline case over a spring-neap period. Plotted using a finer scale
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Figure 13b.  Plot showing differences in sediment thickness between the scheme and
the baseline case over a spring-neap period. Plotted using a coarser
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Summary

This technical note describes the flat bed morphological simulations undertaken as part of the
additional modelling studies carried out for Phase Il of the Mersey Gateway Project. The
principal aim of these tests was to simulate channel formation in the upper estuary with and
without bridge towers in place and to observe differences in predicted channel formation.

This report is one of a series of five Technical Notes (R1241a to R.1241e):

. Technical Note A: Residual Modelling - Stage |;

" Technical Note B: Residual Modelling - Stage II;

. Technical Note C: Flat Bed Morphological Modelling;
. Technical Note D: Real Hydrograph Modelling; and
" Technical Note E: Phase Differences.

From all the tests undertaken the following key conclusions are drawn:

" For the 10m diameter structures the model results are very similar to those obtained
with no structure in place (compare Figure 12f with Figure 3f). This implies that the
impact of the proposed bridge scheme will be small and localised. In addition, the
placing of structures of this size and number should not lead to fixing of the channel.

. The results from these model tests showed that the daily variability in channel form and
position observed in nature cannot be readily reproduced in models of this type
regardless of the forcing used.

" Sediment type does not appear to be a primary driver in the formation of the channels,
although in combination with other drivers such as fluvial flow and tidal conditions there
will be some influence in the smaller-scale channel dynamics.

. In general the model appears capable of reproducing the gross features of the upper
estuary. This also implies that the general features of the system are dictated by the
tidal flows.

" The sensitivity of the model to the value of the initial depth of sediment used in the

simulation would suggest that the underlying geology is a key parameter in determining
the form and position that channels take.
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Introduction

This technical note describes the flat bed morphological simulations undertaken as part
of the additional modelling studies carried out for Phase Il of the Mersey Gateway
Project. The principal aim of these tests was to simulate channel formation in the upper
estuary with and without bridge towers in place and to observe differences in predicted
channel formation.

To undertake this modelling work a relatively coarse grid model has been used. This is
primarily to allow longer time-scale simulations to be undertaken within a reasonable
time span. Figure 1 shows the model grid used in the study.

The process of meandering of tidal channels is a relatively poorly studied subject
despite the fact that meandering is a common feature of tidal environments. Solari
etal. (2002) report that recent observational evidence suggests that meander
wavelength scales with channel width, which would also imply that the process of
meander formation must arise from the effect of secondary flows driven by some
planimetric instability similar to that observed in rivers. In natural tidal basins channel
meandering is a continuous process. If there is available space the meanders have a
tendency to grow. During this process of growth the channel length increases and
energy losses due to friction become more important (Dronkers, 2005).

Methodology

The bathymetric and LIDAR surveys undertaken in the Mersey for 2002 were used as
the starting point for this modelling study. Upstream of Runcorn the bathymetry was
flattened (excluding principal hard points such as quay walls) but maintaining the
general channel slope along the length of this upstream section to the weir at Westy
(Figure 2).

A series of model runs were undertaken for the ‘baseline’ case, that is the flattened
bathymetry but with no bridge towers in place. The morphology was allowed to develop
over a year. Different model drivers and combination of model drivers were tried to
investigate the sensitivity of the model. The combination of drivers used in the baseline
tests is shown in Table 1.

For the bridge tower scenario two tests were undertaken (see Table 2). One with the
bridge towers represented as solid structures and the other represented as added
friction. The initial run (run 1s) represents an extreme scenario as the three towers
each occupy a single grid cell in the model making them of the order of 80m in
diameter. An 8 times amplification of there actual proposed size. The second test
(run 2s) puts the structures in at their actual size, but uses added friction terms to
represent them.
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Table 1.  Baseline runs
. Initial
T\Ilé)n Se? |meent Tidal Boundary Fluvial Flow Wind Sediment
' yp Depth (m)
Harmonic Constant mean
L Sand - 150um constituents annual None !
Harmonic .
2 Sand - 150um constituents Mean daily None 1
. , Constant mean
3 Sand - 150pum Real time-series annual None 1
4 Sand - 150um Real time-series Mean daily None 1
. . Constant mean
5 Sand - 100um Real time-series annual None 1
. . Constant mean
6 Sand - 64um Real time-series annual None 1
. , Constant mean
7 Sand - 300um Real time-series annual None 1
. . Constant mean
8 Sand - 300pum Real time-series annual None 4
o | sand-300um | Realtime-series | COMSEMMEAN 1 pent hourly) 4
annual
Table 2. Scheme runs
. Initial
T\llén Se? |m:nt Tidal Boundary Fluvial Flow Wind Sediment
' yp Depth (m)
. . Constant mean
1s | Sand-150um Real time-series annual None 1
. . Constant mean
2s | Sand - 150um Real time-series annual None 1
Results

The morphological model proved to be unstable for different model drivers and
combination of drivers. This made comparison difficult for some of the scenarios
tested. In general the model appears capable of reproducing the gross features of the
upper estuary, but not the daily variations. Even using a range of non-linear driving
conditions the model appears to want to develop a form of equilibrium channel the
longitudinal shape of which is dictated to a large extent by the lateral boundaries
making up the upper estuary.

R.1241c
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Figures 3-6 show the variation in channel formation over several months for 150um,
100um, 64um and 300um sediment sizes, respectively. Overall, the difference in
sediment size has little effect on the formation and position of the channels. The only
difference is in the time required to form them. There are subtle differences between
the morphology formed using the various sediments, but in general the patterns are
identical. This would suggest that the sediment type is not a primary driver in the
formation of the channels, although in combination with other drivers such as fluvial
flow and tidal conditions there will be some influence in the smaller-scale channel
dynamics.

Figure 7 shows the variation in channel formation over a 6 months period for 150um
sediment under a harmonically driven tidal boundary and a constant annual mean
fluvial flow. Over the length of the simulation, the model shows the development of a
single main channel. Initially a channel is formed in the location of the existing north
channel observed in the real bathymetry. However, this channel does not develop and
is eventually cut off. As was observed in the previous sediment runs, the model
appears to develop an equilibrium form relatively quickly. There is no significant
difference between the channel formed under these driving conditions and that formed
using a real tidal time-series and shown in Figure 3.

Figure 8 shows the results for the model driven using harmonic boundary conditions
and real mean daily flows over a 4 months period. The model proved to be unstable
due primarily to the varying daily discharge. However, as previously the model shows
the development of a single main channel and there is no significant difference
between the channel formed under these driving conditions and that formed in the
previous scenarios and shown in Figures 3 and 7.

Running the model with both real tidal conditions and real mean daily flows led to
instabilities in the results limiting the data obtained to about a month of output.
Therefore, these results have not been presented.

Figure 9 shows the results of a simulation using 300um sediment, a real tidal time-
series at the seaward boundary and a constant mean annual discharge at the
upstream boundary. In addition, the initial depth of sediment was set at 4m. This
compares with a 1m initial depth of sediment used in the other base scenarios. The
ability to erode the sediment to a deeper depth gives a different set of channel profiles
(compare with Figure 6). There is still a main single channel formed, however, initially
channels are also formed along the south and north sides of the estuary. Towards
Runcorn, the main channel is deeper and narrower than that formed previously.
Interestingly, the formation of the channels towards the sides of the estuary shows
some similarity to the existing situation. The imposition of a real hourly wind speed and
direction on the model set up has no major impact on the model results (Figure 10).

Figures 11 and 12 show the results for the two tower scenario runs. Figure 11 has the
towers represented as solid structures within the model grid thereby making them 8
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times larger than the actual bridge scheme, whilst in Figure 12 the results show the
model results for 10m diameter structures represented using added friction. An initial
conclusion of these results is that the size of the structures placed in the system is
important. After an identical simulation period the results for the 80m x 80m structures
still show some impact within the channel. However, for the 10m diameter structures
the model results are very similar to those obtained with no structure in place (compare
Figure 12f with Figure 3f). From this it suggests that bridge piers of the width and
number proposed under the current design, the likely impact will be small and
localised.

It should also be noted though, that despite using a number of different random drivers
(real tides, including atmospheric forcing, real discharges and real winds) in different
combinations the morphological model continued to display a tendency to move to an
equilibrium form that did not vary perceptibly over the time-scale of the simulation. This
implies that the daily variability in channel form and position observed in nature cannot
be readily reproduced in models of this type. Therefore, it would be of little benefit to
run such models over a longer time-scale as the model is relatively insensitive to
typical variations in forcing that occur in nature.

Discussion

A series of model runs were undertaken for a flattened bathymetry upstream of
Runcorn to test the sensitivity of the morphological model to different forcing
mechanisms. These were primarily undertaken for the ‘baseline’ case, which
represented the upper estuary with no bridge structures in place. The results of these
model tests showed that the daily variability in channel form and position observed in
nature cannot be readily reproduced in models of this type.

However, the model showed the ability to reproduce the gross form of the upper
estuary including the ability to form channels along the north and south sides of the
estuary. The sensitivity of the model to the value of the initial depth of sediment used in
the simulation would suggest that the underlying geology is a key parameter in
determining the form and position that channels take. It is not possible to represent this
aspect in the model to that level of detail. In addition, it would require detailed vertical
profiles of the soil properties throughout the estuary as a whole.

The model wants to move towards an equilibrium form based on the forcing conditions
and sediment properties applied. Once this profile has developed very little change
occurs. Using typical forcing mechanisms, such as varying the wind speed and fluvial
flow used in the model has little impact as stated above.

Imposing bridge structures within the initial flat bed bathymetry shows that the larger
the impact on flow cross-sectional area the greater the impact on channel morphology.
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In addition, for the 10m diameter structures, the channel forms independently of them
with the simulation showing similar results with and without the towers in place.

5. Conclusions
Therefore, from all the tests undertaken the following key conclusions are drawn:

. For the 10m diameter structures the model results are very similar to those
obtained with no structure in place (compare Figure 12f with Figure 3f). This
implies that the impact of the proposed bridge scheme will be small and
localised. In addition, the placing of structures of this size and number should
not lead to fixing of the channel.

" The results from these model tests showed that the daily variability in channel
form and position observed in nature cannot be readily reproduced in models
of this type regardless of the forcing used.

" Sediment type does not appear to be a primary driver in the formation of the
channels, although in combination with other drivers such as fluvial flow and
tidal conditions there will be some influence in the smaller-scale channel
dynamics.

" In general the model appears capable of reproducing the gross features of the
upper estuary. This also implies that the general features of the system are
dictated by the tidal flows.

. The sensitivity of the model to the value of the initial depth of sediment used in

the simulation would suggest that the underlying geology is a key parameter in
determining the form and position that channels take.
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Figure 3a. Bathymetric change after 1 month for 150um sediment, using a real tidal

time-series driver and a constant mean annual fluvial flow
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Figure 3b. Bathymetric change after 2 months for 150um sediment, using a real

tidal time-series driver and a constant mean annual fluvial flow
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Figure 3c. Bathymetric change after 3 months for 150um sediment, using a real
tidal time-series driver and a constant mean annual fluvial flow
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Figure 3d. Bathymetric change after 4 months for 150um sediment, using a real

tidal time-series driver and a constant mean annual fluvial flow
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Figure 3e. Bathymetric change after 5 months for 150um sediment, using a real

tidal time-series driver and a constant mean annual fluvial flow
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Figure 3f. Bathymetric change after 6 months for 150um sediment, using a real
tidal time-series driver and a constant mean annual fluvial flow
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Figure 4a.

Bathymetric change after 1 month for 100um sediment, using a real tidal
time-series driver and a constant mean annual fluvial flow
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Figure 4b. Bathymetric change after 2 months for 100um sediment, using a real
tidal time-series driver and a constant mean annual fluvial flow
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Figure 4c. Bathymetric change after 3 months for 100um sediment, using a real
tidal time-series driver and a constant mean annual fluvial flow
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Figure 4d. Bathymetric change after 4 months for 100um sediment, using a real

tidal time-series driver and a constant mean annual fluvial flow
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Figure 4e. Bathymetric change after 5 months for 100um sediment, using a real
tidal time-series driver and a constant mean annual fluvial flow
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Figure 4f. Bathymetric change after 6 months for 100um sediment, using a real
tidal time-series driver and a constant mean annual fluvial flow
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Figure 5a. Bathymetric change after 1 month for 64um sediment, using a real tidal
time-series driver and a constant mean annual fluvial flow
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Figure 5b. Bathymetric change after 2 months for 64um sediment, using a real tidal
time-series driver and a constant mean annual fluvial flow
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Figure 5c. Bathymetric change after 3 months for 64pum sediment, using a real tidal

time-series driver and a constant mean annual fluvial flow
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Figure 5d. Bathymetric change after 4 months for 64pum sediment, using a real tidal
time-series driver and a constant mean annual fluvial flow
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Figure 5e. Bathymetric change after 5 months for 64um sediment, using a real tidal

time-series driver and a constant mean annual fluvial flow
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Figure 5f. Bathymetric change after 6 months for 64pum sediment, using a real tidal
time-series driver and a constant mean annual fluvial flow
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Figure 6a. Bathymetric change after 1 month for 300pum sediment, using a real tidal

time-series driver and a constant mean annual fluvial flow
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Figure 6b. Bathymetric change after 2 months for 300um sediment, using a real
tidal time-series driver and a constant mean annual fluvial flow
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Figure 6c. Bathymetric change after 3 months for 300um sediment, using a real
tidal time-series driver and a constant mean annual fluvial flow
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Figure 6d. Bathymetric change after 4 months for 300um sediment, using a real

tidal time-series driver and a constant mean annual fluvial flow
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Figure 6e. Bathymetric change after 5 months for 300um sediment, using a real
tidal time-series driver and a constant mean annual fluvial flow
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Figure 6f. Bathymetric change after 6 months for 300um sediment, using a real

tidal time-series driver and a constant mean annual fluvial flow
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Figure 7a. Bathymetric change after 1 month for 150um sediment, using harmonic
tidal constituents and a constant mean annual fluvial flow
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Figure 7b. Bathymetric change after 2 months for 150um sediment, using harmonic
tidal constituents and a constant mean annual fluvial flow
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Figure 7c. Bathymetric change after 3 months for 150um sediment, using harmonic
tidal constituents and a constant mean annual fluvial flow
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Figure 7d. Bathymetric change after 4 months for 150pum sediment, using harmonic
tidal constituents and a constant mean annual fluvial flow
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Figure 8a. Bathymetric change after 1 month for 150um sediment, using harmonic
tidal constituents and a daily mean fluvial flow
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Figure 8c. Bathymetric change after 2 months for 150pum sediment, using harmonic
tidal constituents and a daily mean fluvial flow
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Figure 8d. Bathymetric change after 3 months for 150um sediment, using harmonic
tidal constituents and a daily mean fluvial flow
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Figure 8e. Bathymetric change after 4 months for 150pum sediment, using harmonic
tidal constituents and a daily mean fluvial flow
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Figure 9a. Bathymetric change after 15 days for 300um sediment, using a real tidal
time-series driver, a constant mean annual fluvial flow and an initial 4m
depth of sediment
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Figure 9b. Bathymetric change after 1 month for 300um sediment, using a real tidal
time-series driver, a constant mean annual fluvial flow and an initial 4m
depth of sediment
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Figure 9c. Bathymetric change after 2 months for 300um sediment, using a real
tidal time-series driver, a constant mean annual fluvial flow and an initial
4m depth of sediment
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Figure 9d. Bathymetric change after 3 months for 300um sediment, using a real
tidal time-series driver, a constant mean annual fluvial flow and an initial
4m depth of sediment
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Figure 10a.  Bathymetric change after 15 days for 300um sediment, using a real tidal
time-series driver, a constant mean annual fluvial flow an initial 4m depth
of sediment and an hourly wind speed and direction
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Figure 10b.  Bathymetric change after 1 month for 300um sediment, using a real tidal
time-series driver, a constant mean annual fluvial flow an initial 4m depth
of sediment and an hourly wind speed and direction
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Bathymetric change after 3 months for 300um sediment, using a real
tidal time-series driver, a constant mean annual fluvial flow an initial 4m
depth of sediment and an hourly wind speed and direction
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Figure 11a.  Bathymetric change after 1 month with three 80m x 80m structures in
place for 150um sediment, using a real tidal time-series driver and a
constant mean annual fluvial flow
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Figure 11b.  Bathymetric change after 2 months with three 80m x 80m structures in
place for 150um sediment, using a real tidal time-series driver and a
constant mean annual fluvial flow
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Figure 11c.  Bathymetric change after 3 months with three 80m x 80m structures in

place for 150um sediment, using a real tidal time-series driver and a
constant mean annual fluvial flow
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Figure 11d.  Bathymetric change after 4 months with three 80m x 80m structures in
place for 150um sediment, using a real tidal time-series driver and a
constant mean annual fluvial flow
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Figure 11e.  Bathymetric change after 5 months with three 80m x 80m structures in
place for 150um sediment, using a real tidal time-series driver and a
constant mean annual fluvial flow
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Figure 11f. Bathymetric change after 6 months with three 80m x 80m structures in

place for 150um sediment, using a real tidal time-series driver and a
constant mean annual fluvial flow
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Figure 12a.  Bathymetric change after 1 month with three 10m diameter structures in
place (represented using added friction terms) for 150um sediment,
using a real tidal time-series driver and a constant mean annual fluvial
flow
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Figure 12b.  Bathymetric change after 2 months with three 10m diameter structures in
place (represented using added friction terms) for 150um sediment,
using a real tidal time-series driver and a constant mean annual fluvial
flow
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Figure 12c.  Bathymetric change after 3 months with three 10m diameter structures in
place (represented using added friction terms) for 150um sediment,
using a real tidal time-series driver and a constant mean annual fluvial
flow
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Figure 12d.  Bathymetric change after 4 months with three 10m diameter structures in
place (represented using added friction terms) for 150um sediment,
using a real tidal time-series driver and a constant mean annual fluvial
flow
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Figure 12e.  Bathymetric change after 5 months with three 10m diameter structures in
place (represented using added friction terms) for 150um sediment,
using a real tidal time-series driver and a constant mean annual fluvial

'/’-'-"'« //'{ -
S

F
.

:
.I’

B
T

5
Battom depth (zeta point) 4
«10° 01-Jul-2003 00 00 00
e
3
A8A -
387 I &
3.865 ,

3855

distance (m) -

L L1

2
E]
L I I I L
A57 a5 359 a6 61
o’ -4
.5

Figure 12f. Bathymetric change after 1 month with three 10m diameter structures in
place (represented using added friction terms) for 150um sediment,
using a real tidal time-series driver and a constant mean annual fluvial
flow
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Summary

This technical note describes the morphological simulations undertaken as part of the
additional modelling studies carried out for Phase Il of the Mersey Gateway Project. The
principal aim of these tests was to assess the difference applying a real hydrograph and real
tidal data would have on the modelling results for the 3 Tower revised scheme with and without
bridge towers in place and to observe differences in predicted channel formation.

This report is one of a series of five Technical Notes (R1241a to R.1241e):

" Technical Note A: Residual Modelling - Stage |

. Technical Note B: Residual Modelling - Stage II;

. Technical Note C: Flat Bed Morphological Modelling;
" Technical Note D: Real Hydrograph Modelling; and
. Technical Note E: Phase Differences.

Two morphological simulations were undertaken using a three domain model run with a real
tidal signal (including harmonic and atmospheric components) and a mean daily discharge. The
simulations were undertaken for a baseline and scheme (3 Tower revised). From these
additional model tests the key conclusions are:

" There is remarkable agreement between the simulations run with the real tidal and
fluvial data, and the corresponding simulations run with tidal constituents and a mean
annual discharge. There are differences over the intertidal banks, but this is not
unsurprising as both the tidal signal, which contains a non-linear surge component,
and the fluvial flow, which includes larger discharge events particularly in the winter
period and smaller events in the summer period will have a greater impact on the
morphology.

" The extent of change is no greater than that observed in previous simulations and this
together with the magnitude of change would suggest that running the model with both
a real tidal signal and a varying freshwater discharge has no major impact on the
model results.
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Introduction

This technical note describes the morphological simulations undertaken as part of the
additional modelling studies carried out for Phase Il of the Mersey Gateway Project.
The principal aim of these tests was to assess the difference applying a real
hydrograph and real tidal data would have on the modelling results for the 3 Tower
revised scheme with and without bridge towers in place and to observe differences in
predicted channel formation.

The modelling work applied the three domain model used in the morphological
modelling reported in ABPmer (2005). Figure 1 shows the model grid used in the
study. The morphological model of the Mersey Estuary is based on a three domain
calibrated Delft3D-FLOW hydrodynamic model of the Mersey Estuary and reported in
ABPmer (2005). All hydrodynamic parameters are identical to those applied in the
more detailed five domain model used to assess hydrodynamic change. The initial
bathymetry and sediment distribution map was set up using data provided by the
Environment Agency, the British Geological Survey, The University of Southampton,
Gifford & Partners and ABPmer.

The computational grid of the hydrodynamic model consisted of 8 layers through the
vertical. The turbulence closure model used was a k-¢ turbulence model. Due to the
addition of the sediment fraction and morphological updating the computational time-
step was reduced to 0.3 min for stability purposes.

The model utilizes the domain decomposition module of Delft3D allowing a model grid
to be sub-divided into several smaller model domains (sub-domains). The sub-division
Is based on the horizontal and vertical model resolution required for adequately
simulating the key physical processes under consideration. Domain decomposition
allows for local grid refinement in both the horizontal and vertical directions. 3 grids
were chosen with a constant vertical resolution. The middle grid had the finest
horizontal resolution of typically 20-30m. The coarse resolution of the outer and inner
grids enabled the model to simulate longer time-scales than would otherwise be the
case (see ABPmer, 2005).

The dominant sediment type was chosen based on particle size analysis from the field

survey and borehole data. A sand fraction with a dso grain size of 150 um was applied
in the morphological modelling (see also ABPmer, 2003).

Methodology

The model set up was kept the same as those runs reported in ABPmer (2005) except
that the tidal constituent boundary applied at Gladstone was replaced with a real tidal
signal (including harmonic and atmospheric components) and the mean annual fluvial
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discharge applied at Howley weir was replaced with a mean daily discharge. The
model was then run for a period representative of 1 year to allow comparison with the
results reported previously in ABPmer (2005).

Results

Figure 2 shows a comparison of the baseline model results for the middle grid run with
the real tidal and fluvial data against the corresponding model results run with tidal
constituents and a mean annual discharge. The results from the morphological model
show a significant difference between the two simulations though this is not
unsurprising due to the difference in tidal and fluvial forcing. Of more interest is the
difference between the baseline case and the scheme run with the real tidal and fluvial
data, the results of which are shown for all three grids in Figure 3. Comparing this with
Figure 4, which shows a similar comparison but for the simulation run with tidal
constituents and a mean annual discharge, there is remarkable agreement between
the two simulations.

Comparing the two simulations for the 3 Tower revised scheme the general pattern of
morphological change is similar. However, there are differences over the intertidal
banks, but this is expected as both the tidal signal, which contains a non-linear surge
component, and the fluvial flow, which includes larger discharge events particularly in
the winter period and smaller events in the summer period will have a greater impact
on the morphology. The extent of change is no greater than that observed in previous
simulations (see ABPmer 2005) and this together with the magnitude of change would
suggest that running the model with both a real tidal signal and a varying freshwater
discharge has no major impact on the model results.

The approach adopted prior to this simulation was to remove the variability in the fluvial
flow and non-linear components present in the measured tidal signature. This was
done so that the separate contributions of the various forcing mechanisms could be
investigated. However, it was also important to look at the effect of combining real tidal
conditions with real river discharges to see what the difference would be, but only once
a preferred scheme was selected.

Conclusions

Two morphological simulations were undertaken using a three domain model run with
a real tidal signal (including harmonic and atmospheric components) and a mean daily
discharge. The simulations were undertaken for a baseline and scheme (3 Tower
revised). From these additional model tests the key conclusions are:
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. There is remarkable agreement between the simulations run with the real tidal
and fluvial data, and the corresponding simulations run with tidal constituents
and a mean annual discharge. There are differences over the intertidal banks,
but this is expected as both the tidal signal, which contains a non-linear surge
component, and the fluvial flow, which includes larger discharge events
particularly in the winter period and smaller events in the summer period will
have a greater impact on the morphology.

. The extent of change is no greater than that observed in previous simulations
and this together with the magnitude of change would suggest that running the

model with both a real tidal signal and a varying freshwater discharge has no
major impact on the model results.

5. References

ABPmer (2003). New Mersey Crossing. ABP Marine Environmental Research Ltd,
Report No. R.1007.

ABPmer (2005). New Mersey Crossing - Phase Il Modelling Study. ABP Marine
Environmental Research Ltd, Report No. R.1151.
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Summary

This technical note describes the phase difference effects observed in the results of the
modelling studies carried out for Phase Il of the Mersey Gateway Project.

This report is one of a series of five Technical Notes (R1241a to R.1241e):

Technical Note A: Residual Modelling - Stage |
Technical Note B: Residual Modelling - Stage II;
Technical Note C: Flat Bed Morphological Modelling;
Technical Note D: Real Hydrograph Modelling; and
Technical Note E: Phase Differences.

Within the modelling study reference is made through out the reports to differences in phase
and thus corresponding differences in magnitude between the baseline case and the scheme
scenario. This Technical Note sets out and explains these effects in more detail.

RI3411/4 (i) R.1241e
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Phase Difference

Within the modelling study reference is made throughout the reports to differences in
phase and thus corresponding differences in magnitude between the baseline case
and the scheme scenario. For example:

“Figure C3B shows small differences in speed along the front of the tidal wave
as it propagates onto the intertidal banks. This is considered to be due to a
slight phase change between the baseline case and scheme caused by the
interaction of the strong incoming tide and the weak ebbing tide.”

To demonstrate this effect water level and speed time-series have been plotted for a
single observation point in close proximity to the proposed revised 3 Tower scheme for
both the scheme and the baseline case.

Figure 1a shows the water level time-series for a single model observation point for the
baseline and the scheme. Figure 1b shows a close up of the water level showing the
phase shift and resulting change in magnitude in water levels. In the figures the red
line represents the baseline “existing” conditions whilst the black line represents the
water levels as a result of the scheme. In this instance the change in magnitude is
small, of the order of 0.02m. In addition, from Figure 1a it is clear that there is no
perceptible change in tidal range at the observation point and hence the overall
magnitude of the tide at that point remains the same in the scheme as in the baseline
case.

Figure 2a shows the corresponding surface speed at the same observation point as for
the water levels for both the baseline and the scheme. In Figure 2b a close up of the
speed over a short period of time can be seen. This corresponds to the same period of
time selected in the water level time-series. Again, in Figure 2a, whilst the peak flood
speed at the point of interest remains unchanged in the period of interest there is a
change in timing. Therefore, at the same point in time there is a clear difference in
magnitude. In this instance, the change is a decrease in speed of the order of 0.25m/s.
Thus, when viewed as a contour plot of spatial change this would represent a large
difference in speed between the baseline and the scheme. However, clearly the actual
change represents only a change in the timing not in the overall magnitude of speed
occurring at that location.

It is important to recognise these effects in the model results and differentiate between

these and actual changes in magnitude. A similar effect will be observed in the bed
shear stress results as these are a function of the velocity.

1 R.1241e
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